Как научиться считать в уме

Содержание

Устный счет: как научиться считать в уме

«Математику уже за то любить следует, что она ум в порядок приводит» – говорил Михаил Ломоносов. Умение считать в уме остается полезным навыком и для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него. Возможность обходиться без специальных девайсов и в нужный момент оперативно решить поставленную арифметическую задачу – это не единственное применение данного навыка. Помимо утилитарного назначения, приемы устного счета позволят вам научиться организовывать себя в различных жизненных ситуациях. Кроме того, умение считать в уме, несомненно, положительно скажется на имидже ваших интеллектуальных способностей и выделит вас среди окружающих «гуманитариев».

Тренировка устного счета

Есть люди, которые умеют совершать несложные арифметические операции в уме. Умножить двузначное число на однозначное, умножать в пределах 20, перемножить два небольших двузначных числа и т.д. – все эти действия они могут производить в уме и достаточно быстро, быстрее среднего человека. Часто этот навык оправдан необходимостью постоянного практического использования. Как правило, люди, которые хорошо считают в уме, имеют математическое образование или, по крайней мере, опыт решения многочисленных арифметических задач.

Несомненно, опыт и тренировка играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые, в отличие от вышеописанных, способны считать в уме гораздо более сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать сложные арифметические операции, которые не каждый человек и в столбик сможет посчитать.

Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме. Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

1. Способности. Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению.

2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета.

Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм. Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете «переплюнуть» даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.

Уроки на сайте

Уроки устного счета, представленные на сайте, направлены именно на развитие этих трех составляющих. В первом уроке рассказано, как развить в себе предрасположенность к математике и арифметике, а также описаны основы счета и логики. Затем дан ряд уроков по специальным алгоритмам для совершения различных арифметических операций в уме. И наконец, в данном тренинге представлены дополнительные материалы, помогающие тренировать и развивать умение считать устно, для того, чтобы суметь применить свой талант и свои знания в жизни.

Урок 1. Способности. Упражнения и рекомендации по развитию устного счета, внимания, краткосрочной памяти.

  • Урок 1. Внимание и концентрация при счете в уме

Уроки 2-7. Алгоритмы. Что касается методик, то они даны в следующих уроках, которые разделены на несколько видов:

  • Урок 2. Простые арифметические закономерности
  • Урок 3. Традиционные методы умножения двузначных чисел
  • Урок 4. Частные методики умножения двузначных чисел
  • Урок 5. Опорное число при умножении чисел до 100
  • Урок 6. Умножаем любые числа до 100
  • Урок 7. Возведение в квадрат

Дополнительные материалы. Тренировка. В дополнение к урокам на сайте представлены многочисленные приемы и способы, упражнения, методики, интересные примеры, статьи и видео и многое другое для тренировки и развития вашего быстрого счета в уме.

Уже сейчас вы можете проверить, как быстро вы считаете в уме.

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

Устный счет: техника быстрого счета в уме

Зачем считать в уме, если решить любую арифметическую задачу можно на калькуляторе. Современная медицина и психология доказывают, что устный счет – это тренаж для серых клеточек. Выполнять такую гимнастику необходимо для развития памяти и математических способностей.

Известно множество приёмов для упрощения вычислений в уме. Все, кто видел знаменитую картину Богданова-Бельского «Устный счёт», всегда удивляются – как крестьянские дети решают такую непростую задачу, как деление суммы из пяти чисел, которые предварительно ещё надо возвести в квадрат?

Оказывается, эти дети – ученики известного педагога-математика Сергея Александровича Рачицкого (он также изображен на картине). Это не вундеркинды – ученики начальных классов деревенской школы XIX века. Но все они уже знают приёмы упрощения арифметических расчетов и выучили таблицу умножения! Поэтому решить такую задачку этим детишкам вполне под силу!

Секреты устного счёта

Существуют приемы устного счета простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.

Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем – единицы.

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел – это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения – это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения – с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.

Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

умножить на 4 – это дважды умножить на 2;

умножить на 6 – это значит умножить на 2, а потом на 3;

умножить на 8 – это трижды умножить на 2;

умножить на 9 – это дважды умножить на 3.

разделить на 4 – это дважды разделить на 2;

разделить на 6 – это сначала разделить на 2, а потом на 3;

разделить на 8 – это трижды разделить на 2;

разделить на 9 – это дважды разделить на 3.

Читайте также:  Как покрасить волосы хной

Как умножать и делить на 5

Число 5 – это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма. Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение. Встречаются такие задачи очень редко – это примеры занимательные, так называемые маленькие хитрости.

Счет на пальцах

Сегодня еще можно встретить много защитников «пальчиковой гимнастики» и методики устного счета на пальцах. Нас убеждают, что учиться складывать и отнимать, загибая и разгибая пальцы – это очень наглядно и удобно. Диапазон таких вычислений очень ограничен. Как только расчеты выходят за рамки одной операции возникают трудности: надо осваивать следующий прием. Да и загибать пальцы в эпоху айфонов как-то несолидно.

Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:

  • Чтобы умножить любое число в пределах первой десятки на 9, надо развернуть ладони к себе.
  • Отсчитывая слева направо, загнуть палец, соответствующий умножаемому числу. К примеру, чтобы умножить 5 на 9, надо загнуть мизинец на левой руке.
  • Оставшееся количество пальцев слева будет соответствовать десяткам, справа – единицам. В нашем примере – 4 пальца слева и 5 справа. Ответ: 45.

Да, действительно, решение быстрое и наглядное! Но это – из области фокусов. Правило действует только при умножении на 9. А не проще ли, для умножения 5 на 9 выучить таблицу умножения? Этот фокус забудется, а хорошо выученная таблица умножения останется навсегда.

Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь.

Устный счёт на автомате

Во-первых, необходимо хорошо знать состав числа и таблицу умножения.

Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.

В-третьих, чтобы приём превратился в удобный навык, надо постоянно проводить краткие «мозговые штурмы» – упражняться в устных вычислениях, используя тот или иной алгоритм.

Тренировки должны быть короткими: решить в уме по 3-4 примера, используя один и тот же приём, затем переходить к следующему. Надо стремиться использовать любую свободную минутку – и полезно, и нескучно. Благодаря простым тренировкам все вычисления со временем будут совершаться молниеносно и без ошибок. Это очень пригодится в жизни и выручит в непростых ситуациях.

Как научиться быстро считать в уме?

Как давно вы считали в уме, а не столбиком, и уж тем более не с помощью калькулятора? Между прочим, считать в уме не только модно, но и полезно: так вы развиваете краткосрочную память, концентрацию и внимание. А ещё, какой же кайф испытываешь, когда можешь посчитать, сколько тебе должны дать сдачи, пока стоишь в очереди, м-м-м…

Всего несколько месяцев ежедневных тренировок по 5-10 минут, и вы почувствуете, как ускорился ваш мозг.

Сложение

Начнём с простого — сложения однозначных чисел. Научившись мгновенно складывать однозначные числа, вы сможете легко складывать и многозначные числа, потому что все расчёты сводятся к выполнению типовых действий. Вы в этом скоро убедитесь.

Сложение однозначных чисел

С примерами, результаты которых находятся в пределах 10 проблем нет. Эти комбинации чисел нужно просто запомнить, как основу основ.

А вот для примеров «с переходом через 10» уже есть методика — «опора на десяток». Суть в том, чтобы довести одно слагаемое до 10, а потом из второго слагаемого вычесть столько же, сколько мы прибавили к первому.

Например, нам нужно сложить 5 и 8:

  1. Числу 5 не хватает до 10 ещё столько же — 5.
  2. Теперь представим 8 как сумму 5 и ещё какого-то числа (это 3).
  3. И прибавим к 5 ту часть числа 8, которой недостаёт до 10, а затем и остаток. Получится 10 и 3, то есть 13.

Сложение многозначных чисел

Принцип сложения многозначных чисел — складывать друг с другом одинаковые разряды: тысячи с тысячами, сотни с сотнями, десятки с десятками, единицы с единицами.

Например, нам нужно сложить 245 и 917:

    245 состоит из трёх разрядов — 200, 40 и 5. А 917 из 900, 10 и 7.

Сложим разрядные части друг с другом:

200 + 900 = 1100, 40 + 10 = 50, 5 + 7 = 12.

А теперь сложим получившиеся числа в обратном порядке, «закрывая» нули:

Вычитание

Как и со сложением, с вычитанием однозначных чисел из однозначных ничего сложного нет. А при вычитании однозначного числа из двузначного удобно пользоваться тем же правилом «опоры на десяток».

Вычитание однозначных числа

Например, нужно вычесть 13 − 7:

  1. Убираем у 13 столько, чтобы получилось 10 — то есть 3.
  2. Столько же убираем и у 7 — получается 4.
  3. Теперь просто вычитаем 4 из 10.

Вычитание многозначных чисел

Здесь всё даже проще, чем со сложением многозначных чисел, потому что на разрядные части нужно разложить только то число, которое вычитаем.

Например, нужно вычесть 734 − 427:

  1. Раскладываем 427 на разряды: 400, 20 и 7. Теперь последовательно вычитаем их из 734.
  2. Вычесть 734 − 400 очень просто, потому что действие происходит только с сотнями. Грубо говоря, мы вычитаем 4 из 7 — получаем 3, вернее, 334.
  3. С десятками всё аналогично: вычитаем 30 − 20, получаем 10 — 314.

Теперь вычитаем единицы через десяток: 314 − 7.

Убираем 4 из 314 и 7, получаем 310 − 3. Ну а тут уже совсем просто — ответ 307.

Чтобы вычитать 7, 8 и 9 было проще, часто прибегают к следующим правилам:

При отнимании 9 из числа сначала вычитают 10, а затем добавляют 1:

321 − 9 = 321 − 10 + 1 = 312

При отнимании 8 из числа сначала вычитают 10, а затем добавляют 2:

321 − 8 = 321 − 10 + 2 = 313

При отнимании 7 из числа сначала вычитают 10, а затем добавляют 3:

321 − 7 = 321 − 10 + 3 = 314

Умножение

Это когда несколько раз складывают одно и то же. Например, 7 × 3 = 7 + 7 + 7 = 21.

Чтобы научиться быстро умножать любые числа в уме (кроме совсем уж космических), нужно идеально умножать однозначные числа, то есть знать таблицу умножения.

Причём идеально знать её необязательно, достаточно запомнить для себя опорные числа, которые будут помогать в вычислениях. Умножим 6 × 7. Мнемотехнически мы знаем что 6 × 6 = 36. То есть к 36 нужно прибавить ещё 6, чтобы получился ответ — 42.

Считается, что из всех примеров в таблице умножения 7 × 8 самый сложный. Чтобы запомнить ответ есть отличное правило «пять шесть семь восемь»: 56 = 7 × 8.

Умножение однозначного числа на двузначное

    В первую очередь мы раскладываем 387 на разряды — 300, 80 и 7 — и умножаем каждый из них на 8.

Начинаем с сотен: 300 × 8 — это то же самое, что умножить 3 × 8, а потом к результату дописать два нуля. То есть:

3 × 8 × 100 = 24 × 100 = 2400.

По аналогии, 80 × 8 = 640, 7 × 8 = 56.

А теперь мы складываем получившиеся числа, объединяя их по разрядам:

2400 + 640 + 56 = 2000 + 400 + 600 + 40 + 50 + 6 = 2000 + (400 + 600) + (40 + 50) + 6 = 2000 + 1000 + 90 + 6 = 3000 + 90 + 6 = 3096

Любое число легко умножить на 9: нужно просто умножить на 10 (или дописать в конце ноль), а затем отнять исходное число.

47 × 9 = (47 × 10) − 47 = 470 − 47 = 423

Некруглое число можно легко умножить на 2, сначала округлив его до удобного ближайшего значения.

Например, 237 × 2. Сначала проще умножить 240 × 2 = 480. А потом вычесть из результата 6 (3 × 2 = 6 — ведь 3 нам не хватало до 240). Итого:

237 × 2 = 240 × 2 − (3 × 2) = 476

Чтобы умножить любое двузначное число на 11, нужно сложить две цифры этого двузначного числа друг с другом, а затем вписать её между цифрами исходного числа:

Правда, если сумма двух цифр исходного числа больше 10, нужно поставить разряд единиц между цифрами исходного числа, а десяток прибавить к левой цифре:

Умножение двузначных чисел

Хотя кажется, что умножать двузначные числа — вершина ментальных вычислений, решать такие примеры не сильно сложнее, чем в предыдущем пункте. Давайте разберём на примере.

    Разобьём 34 на 30 и 4, чтобы было проще, а затем умножим каждое на 83.

83 умножить на 30 просто — это как умножить 83 × 3, а потом умножить результат ещё на 10. Как умножать однозначные и двузначные числа мы разобрались. Считаем:

83 × 3 = 80 × 3 + 3 × 3 = 240 + 9 = 249. Значит, 84 × 30 = 2490.

83 × 4 = 80 × 4 + 3 × 4 = 320 + 12 = 332.

2490 + 332 = 2000 + 400 + 300 + 90 + 30 + 2 = 2000 + 700 + 120 + 2 = 2822.

Деление

Это операция, обратная умножению. Начнём снова с самого простого.

Деление двузначного числа на однозначное

Разделим 48 : 3. Основная задача — подобрать число, которое можно умножить на 3 и получить 48. Из таблицы умножения мы помним, что единственное число, результат умножения которого на 3 в конце имеет цифру 8 — это 6. А 3 × 6 = 18. То есть, у нас остаётся 30 : 3 = 10. Итого, получается 48 : 3 = 16.

Деление многозначного числа на однозначное

Разделим 6475 : 7. В подобных примерах главная задача — «взять» максимальные «круглые» части, которые можно разделить на 6 без остатка.

  1. Выделим из 6475 самую большую часть, которую можно разделить на 7 без остатка. 6475 близко к 7000 (то есть 7 × 1000), значит, можно попробовать взять 900 × 7 = 6300. Отлично!
  2. Остаётся 175. Таким же образом, выделяем из 175 самое большое число, которое можно разделить на 7 по таблице умножения — это 140. А 140 : 7 = 20. Запомним это число и вычтем 175 − 140. Сотни в результате дают ноль, а 7 − 4 = 3. То есть остаток на данный момент — 35.
  3. Вспоминаем, что по таблице умножения 7 × 5 = 35, и складываем все получившиеся числа: 900 + 20 + 5 = 925.

Деление на двузначное число

С делением на двузначное число всё гораздо интереснее. Задача в том, чтобы найти пределы, в которых лежит результат.

Например, разделим 6351 : 73:

  1. Сначала попробуем угадать, в каком десятке находится результат. Помним, что по таблице умножения 7 × 8 = 56, поэтому пробуем умножить 73 × 80 = 5840. Это максимально близкий десяток, потому что если прибавить ещё 730 (то есть 73 × 10), получится уже 6570 — больше чем нужно. Следовательно, наше число лежит в пределах между 80 и 90.
  2. Теперь посмотрим на последние цифры наших чисел — 1 и 3. Из таблицы умножения мы помним, что только одно число при умножении на 3 на на конце даёт 1 — это 7. Пробуем умножить 73 × 7 = 511. Складываем 5840 + 511 = 6351. Ура, ответ 87!

Некруглые числа можно легко делить на 2, округляя их. Например, 358 делим на 2. Округлим 358 до 360, а затем уже его разделим на 2 — получим 130. А затем вычтем и этого числа 1 (получились в результате деления на 2 прибавленной 2).

358 : 2 = 360 : 2 − 2 : 2 = 130 − 1 = 129

Чтобы умножить число на 25, порой проще разделить его на 4, а затем умножить на 100 (или дописать два нуля):

12 × 25 = 12 : 4 × 100 = 3 × 100 = 300

Этих способов достаточно, чтобы тренироваться уверенно считать в уме. Помните, что делать это нужно регулярно, уделяя всего по 5–10 минут каждый день. Постарайтесь поймать свой ритм, чтобы решение таких задачек приносило удовольствие. И упирайте на правильность ответов, а не скорость — она придёт со временем. И не бросайте.

А если вам нужна помощь в решении более сложных задач, которые уже нельзя просчитать в уме, вам с радостью помогут специалисты Мультиворка

Как научиться считать в уме

Считать в уме, по мнению многих, в наше время уже неактуально, ведь калькулятор есть в каждом смартфоне, компьютере и ноутбуке. Однако калькулятор не будет сопровождать вас при каждом вашем шаге, а считать необходимо постоянно и много. Способность сосчитать в уме – умение весьма нужное даже в 21 веке. А тем более это нужно школьникам для решения примеров по математике из нелёгкой школьной программы. И им весьма полезно будет уметь считать быстро, не пребегая к электронным устройствам.

Опыт и постоянные тренировки играют важную роль в развитии любых способностей, но навык устного счета не состоит только лишь из опыта. Это могут доказать люди, умеющие считать в уме гораздо более сложные примеры: например, умножать и делить трех- и четырехзначные числа, находить суммы и разности огромных примеров.

Что необходимо знать и делать человеку, дабы повторить такое?

• Во-первых, концентрация или же умение ненадолго удерживать в памяти несколько вещей одновременно.

• Во-вторых, алгоритмы, специальные методы вычислений и математические уловки, значительно облегчающие процесс устного счёта.

• В-третьих, практика. Постоянные тренировки и постепенное усложнение решаемых задач позволят улучшить скорость и качество устного счета.

Важно отметить, что именно практика имеет наибольшее значение. Не обладая достаточным опытом, вы не сможете быстро применять удобные алгоритмы, подходящие под определённые ситуации. И помните, что максимальный эффект будет достигнут при оптимальном использовании всех трёх составляющих. Тренировать сразу все аспекты этого навыка Вы можете в онлайн тренажере устного счёта.

Внимание и концентрация

Чтобы максимально быстро считать в уме, необходимо уметь концентрироваться на конкретном примере. Этот навык полезен не только для совершения математических операций, но и для решения любых жизненных задач. Существует несколько способов улучшить свою внимательность и способность к концентрации:

При счете в уме, важно ясно представлять себе решаемый пример – визуализировать его. Запоминать промежуточные результаты нужно не на слух, а так как они выглядят в записи, например, на бумаге. Тренировать подобное восприятие можно разными способами, и отчасти визуализация решения приходит с опытом.

Старайтесь всегда находить что-то интересное в рутине, превращая действие в игру. Так поступают и некоторые родители, желающие, чтобы их ребёнок выполнил какую-либо скучную работу.

Огромное количество людей всегда хотят «быть лучше» соперника. Именно поэтому состязательность является еще одним способом развить свою внимательность. В устном счете Вы можете найти себе соперника и пытаться его в этом превзойти.

Еще одним фактором, создающим азарт при счете, может стать борьба с самим собой при достижении определенного результата, то есть личные рекорды. Их можно ставить, например, в скорости счета, в количестве решенных примеров и своей точности ответов.

Наконец, максимальная концентрация может быть достигнута при спонтанном увлечении процессом счета. Как пример, во время чтения Вы перестаёте думать об окружающих вас предметах, людях, ситуациях, полностью погружаетесь в книгу. Именно неподдельный интерес к чему-либо способен заставить вас приобрести наибольшую внимательность в этом деле.

Безусловно, все эти способы надо отрабатывать, практиковать. В этом могут помочь различные тренажеры зрительной памяти и улучшения внимательности.

Простые арифметические закономерности

Решение любой по сложности задачи всегда сводится к применению базовых принципов, и именно эти принципы и закономерности позволят вам быстро выполнять различного рода операции. Существует определенный набор таких правил и закономерностей, которые необходимо довести до автоматизма с помощью разных онлайн тренажеров по математике.

Вычитание 7, 8, 9. Чтобы вычесть 9 из любого числа, нужно вычесть из него 10 и прибавить 1 . Чтобы вычесть 8 из любого числа, нужно вычесть из него 10 и прибавить 2 . Чтобы вычесть 7 из любого числа, нужно вычесть из него 10 и прибавить 3 . Если обычно вы считаете по-другому, то для лучшего результата вам необходимо привыкнуть к этому новому способу.

Таблица умножения. Для бстрого устного счета хорошо бы безупречно знать таблицу умножения, которая является основой счета. Если у Вас с этим еще проблемы, можете воспользоваться онлайн Тренажером таблицы умножения.

Умножение на 2. Для умножения на 2 некруглых чисел пробуйте округлять их до ближайших более удобных. Так 139×2 проще считать, если сначала умножить 140 на 2 (140×2=280) , а потом вычесть 1×2=2 (именно 1 нужно прибавить к 139, чтобы получить 140). Итого: 140×2 – 1×2 = 280 – 2 = 278 .

Деление на 2. Несмотря на то, что многим умножение и деление на 2 дается достаточно просто, в сложных случаях так же пытайтесь округлять числа. Например, чтобы разделить 198 на 2, нужно сначала разделить 200 (это 198 + 2 ) на 2 и отнять 2 деленое на 2. Итого: 198 : 2 = 200 :2- 2 :2=100-1=99.

Деление и умножение на 4 и 8. Деление (или умножение) на 4 и на 8 являются двукратным или трехкратным делением (или умножением) на 2. Производить эти операции удобно последовательно. Например, 46 × 4 = 46 × 2×2 = 92 × 2 =184.

Умножение на 5 и 25. Умножение на 5 , и деление на 2 – практически одно и то же, поэтому всегда умножайте на 5, поделив число на 2 и умножив его на 10: 88× 5 =88: 2×10 =440. Умножение на 25 соответствует делению на 4 (с последующим умножением на 100). Так 120× 25 = 120: 4×100 = 30 × 100 = 3000 .

Умножение на 9. Быстро умножить любое число на 9 можно следующим образом: сначала умножьте это число на 10 , а затем вычтите из результата само число. Например: 89× 9 =89 0 -89=801 .

Умножение на 11. Чтобы умножить любое двузначное число на 11, нужно между первой и второй цифрой умножаемого числа вписать сумму первой и второй цифры. Например: 23×11= 2 (2+3) 3 = 2 5 3. Или если сумма чисел в центре дает результат больше 10: 29×11 = 2 (2+9) 9 = 2 (11) 9 = 3 1 9.

И наконец, полезно знать деление чисел, кратных 10 на числа, кратные двум: 1000 = 2 × 500 = 4 × 250 = 8 × 125 = 16 × 62,5 .

Более сложные методики

Эффективность умножения в уме некоторых двузначных чисел может быть выше за счет меньшего количества действий, если использовать специальные алгоритмов. Ниже представлены три специальные методики, в том числе введение и использование опорного числа.

Квадрат суммы и квадрат разности

Для того чтобы возвести в квадрат двузначное число, можно воспользоваться формулами квадрата суммы или квадрата разности . Например:

23 2 = (20+3) 2 = 20 2 + 2×3×20 + 3 2 = 400+120+9 = 529

69 2 = (70-1) 2 = 70 2 – 70×2×1 + 1 2 = 4 900-140+1 = 4 761

Возведение в квадрат чисел, заканчивающихся на 5

Чтобы возвести в квадрат числа, заканчивающиеся на 5, необходимо число до последней пятерки, умножить на сумму этого же числа и единицы . К результату дописываем 25. Вот несколько примеров:

25 2 = (2×(2+1)) 25 = 625

85 2 = (8×(8+1)) 25 = 7 225

155 2 = (15×(15+1)) 25 = (15×16)25 = 24 025

Опорное число

Наиболее популярной методикой умножения больших чисел в уме является прием использования, так называемого, опорного числа. Опорное число при умножении – это число, к которому близко находятся оба множителя и на которое удобно умножать. А методика использования этого числа зависит от того, являются ли множители больше или меньше него самого.

Оба множителя меньше опорного. Допустим, мы хотим умножить 48 на 47 . Эти числа находятся достаточно близко к числу 50 , а следовательно удобно использовать 50 в качестве опорного числа. Далее действуем так: из 47 вычетаем столько, сколько не хватает 48 до 50 (либо из 48 вычетаем столько, сколько не хватает 47 до 50 ), полученный результат умножаем на опорное число и прибавляем к нему произведение разностей опроного числа с каждым сомножителем. Наглядный пример:

( 48 –( 50 – 47 ))× 50 + ( 50 – 47 )×( 50 – 48 ) = 2250 + 6 = 2256

Оба множителя больше опорного. Действовать нужно точно так же, но не вычитать недостаток, а прибавлять избыток:

( 51 +( 63 – 50 ))× 50 + ( 63 – 50 )×( 51 – 50 ) = 3200 + 13 = 3213

Один множитель меньше, другой больше опорного. Схема та же, но произведение недостатка и избытка нужно вычитать:

( 45 +( 52 – 50 ))× 50 – ( 52 – 50 )×( 50 – 45 ) = 2350 – 10 = 2340

В заключение

Как уже было сказано ранее, навык устного счета набирается из трех составляющих: это способность концентрироваться конкретном примере, грамотный подбор метода быстрого счета и, конечно, опыт . Запомните, даже зная наизусть все алгоритмы, упрощающие вам устный счет, вы не сможете сосчитать без пракики так же быстро, как если бы вы занимались этим каждый день уже несколько лет. Именно потоянные тренировки на разного рода тренажерах устного счета позволят вам отточить мастрство в этом деле и приобрести тот самый бесценный навык быстрого устного счета.

Развитие навыка счета в уме у детей

Если ребёнок плохо считает, его нужно правильно научить этому навыку. Несмотря на наличие всевозможных устройств, помогающих людям производить всевозможные математические действия, навык счёта в уме остаётся актуальным. Владение подобными приёмами позволяет организоваться в различных жизненных ситуациях, положительно влияет на имидж, является демонстрацией интеллектуальных способностей.

Навык быстрого счёта в уме можно развить в любом возрасте, но лучше уделить внимание развитию этой способности в раннем детстве. Поэтому родители должны знать, как научить ребёнка считать в уме.

Польза от счёта в уме

Научить ребёнка быстро считать в уме необходимо, потому что от этого занятия идёт одна только польза, а именно:

  • формируется аналитический склад ума, благодаря чему идёт профилактика таких болезней, как слабоумие, маразм, болезнь Альцгеймера;
  • при походе в магазин или покупке билетов Вы можете быть уверены, что Вас не обманут на кассе;
  • человек, который быстро считает в уме, мгновенно принимает верные решения в трудных ситуациях, просчитывает, какие последствия могут быть, ищет лучшие вариации различных задач;
  • у ребёнка развиваются интеллектуальные способности, что положительно влияет на его самооценку и карьерный рост;
  • дети, которые быстро считают в уме, имеют хорошее развитие речи, мысленной реакции, способности принимать творческие решения.

Лучший возраст для начала обучения

Нужно не только знать, как научить ребёнка устному счёту, но и когда лучше начать это делать. Специалисты пришли к общему мнению, что самый благоприятный период для обучения устному счёту – это от 3 до 5 лет. В это время ребёнок легко осваивает лёгкие действия по арифметике (сложение и вычитание). В 5 лет ребёнок решает элементарные примеры и задачки.

Научить считать в уме школьника довольно просто. Главное, чтобы он знал таблицу умножения. Некоторые люди достаточно быстро умеют складывать, вычитать двузначные числа в уме. Другие молниеносно оперируют трёхзначными величинами. Специалисты не называют такую способность феноменом, а полагают, что это под силу любому человеку после соответствующих тренировок.

Следует выделить три важных аспекта:

  • способность концентрировать внимание и удерживать в краткосрочной памяти несколько объектов одновременно;
  • знание специальных алгоритмов, умение подобрать нужный в конкретной ситуации;
  • постоянные тренировки.

При организации упражнений на устные вычисления с дошкольником важно превратить процесс в игру и соблюдать все необходимые условия:

  • установить четкие правила;
  • создать атмосферу состязания – учиться в компании сверстников веселее и азартнее, чем в одиночку;
  • разработать систему поощрений за хорошие результаты.

Первый этап обучения ребёнка устному счету – усвоение расположения цифр. Примеры игровых заданий:

  • знакомство с понятиями «один» и «много» – счётным материалом могут быть кубики, палочки, любые игрушки;
  • соотнесение количества предметов с конкретной цифрой;
  • счёт порядковый и количественный;
  • изучение состава числа.

Перечисленные типы упражнений относятся к тренировочной составляющей навыка. Только при наличии успешного результата можно переходить к алгоритмам и занятиям на концентрацию внимания. Если ребёнок не умеет делать данные упражнения, ему надо повторить всё снова и продуктивно тренироваться.

Эффективные методики обучения счёту в уме

Обучение ребёнка устному счёту – очень важная вещь в процессе развития детей. В этом могут помочь различные программы:

  • Методика Полякова. Сергей Поляков, советский и российский инженер, посвятил более 10 лет тому, чтобы как можно раньше обучить детей техникам чтения и счёта. Его способ состоит в том, что сначала учат ребят считать до десяти и просят их запомнить итоги всех вариаций на плюс и минус. То есть, отрабатываем действия. Затем дошкольники учатся складывать и вычитать в уме двузначные числа. В данном случае им необходимо понять и запомнить способы, как складывать и вычитать в других десятках.
  • Программа Монтессори. Мария Монтессори, первая в Италии женщина-врач и педагог, много лет посвятила системе обучения детей. Данная программа основывается на эмпирических и игровых формах работы с детьми. Материалы, которые используются в обучении, должны быть удобны в применении и иметь яркие картинки, чтобы ребёнку нравилось заниматься. Также детям необходимо на практике применять полученные знания.
  • Ментальная арифметика – логически продуманная, эффективная методика обучения быстрому устному счету является ментальная арифметика. Занятия можно начинать в дошкольном возрасте, когда мозг гибкий, способный к образованию новых нейронных связей.

Для обучения ментальной арифметике используется абакус – древние счёты. Первые тренировки – это умение производить действия, используя костяшки. Последующие – отказ от реального счётного инструмента, замена его ментальной картинкой. Преподаватели учат работать два полушария мозга одновременно.

Мысленная визуализация вычислений – эффективный тренажёр, дающий поразительные результаты. Дети осваивают навык быстрого устного счёта в уме, учатся концентрировать внимание, овладевают специальными алгоритмами вычислений, которые впоследствии рационально используют в нужный момент.

Методики обучения в разном возрасте

Обучить ребёнка устному счёту можно с помощью разных способов. Все они зависят от возраста детей:

  • Дети 2-3 лет. На занятиях в игровой форме расскажите ребёнку, что такое счёт и зачем он нужен. Объясните понятия «много» и «мало».
  • Дети 4-5 лет. Используйте желание дошкольника помочь маме с папой по хозяйству. Собирая тарелки со стола, посчитайте их вместе. Раскладывая игрушки по полкам, также устройте совместный счёт. Со временем у ребёнка сформируются понятия «больше» и «меньше». Познакомьте его с разными геометрическими формами: кругом, квадратом, прямоугольником.
  • Дети 5-6 лет. В этом возрасте ребёнок учится сравнивать предметы, которые отличаются по количеству на один. Основным методом обучения является сравнение. Ребёнок учится устанавливать равенство, убирая или дополняя элементы.
  • Дети 7-8 лет. Школьник осваивает десятичную систему исчисления. Можно использовать методику Зайцева «Тысяча плюс», которая доводит до автомата сложение и вычитание чисел до ста. Или метод Глена Домана, при котором школьники учатся устному счёту по карточкам с точками, развивая при этом зрительную память.

Оцените статью
Добавить комментарий